Fixed time comparison validation func. Now compares min/max value of array.
This commit is contained in:
parent
c24bc981b0
commit
d8fabe0f97
@ -133,26 +133,29 @@ class ValidationRuleBaseFunctions():
|
|||||||
if not self.ignore_port_administration_flag:
|
if not self.ignore_port_administration_flag:
|
||||||
participant_types = [ParticipantType.AGENCY.value, ParticipantType.MOORING.value, ParticipantType.PORT_ADMINISTRATION.value, ParticipantType.PILOT.value, ParticipantType.TUG.value]
|
participant_types = [ParticipantType.AGENCY.value, ParticipantType.MOORING.value, ParticipantType.PORT_ADMINISTRATION.value, ParticipantType.PILOT.value, ParticipantType.TUG.value]
|
||||||
else:
|
else:
|
||||||
participant_types = [ParticipantType.AGENCY.value, ParticipantType.MOORING.value, ParticipantType.PORT_ADMINISTRATION.value, ParticipantType.PILOT.value, ParticipantType.TUG.value]
|
participant_types = [ParticipantType.AGENCY.value, ParticipantType.MOORING.value, ParticipantType.PILOT.value, ParticipantType.TUG.value]
|
||||||
df_times = df_times.loc[df_times["participant_type"].isin(participant_types),:]
|
df_times = df_times.loc[df_times["participant_type"].isin(participant_types),:]
|
||||||
|
|
||||||
# exclude missing entries and consider only pd.Timestamp entries (which ignores pd.NaT/null entries)
|
# exclude missing entries and consider only pd.Timestamp entries (which ignores pd.NaT/null entries)
|
||||||
estimated_times = [time_ for time_ in df_times.loc[:,query].tolist() if isinstance(time_, pd.Timestamp)] # df_times = df_times.loc[~df_times[query].isnull(),:]
|
estimated_times = [time_ for time_ in df_times.loc[:,query].tolist() if isinstance(time_, pd.Timestamp)] # df_times = df_times.loc[~df_times[query].isnull(),:]
|
||||||
|
|
||||||
# apply rounding. For example, the agreement of different participants may be required to match minute-wise
|
|
||||||
# '15min' rounds to 'every 15 minutes'. E.g., '2023-09-22 08:18:49' becomes '2023-09-22 08:15:00'
|
|
||||||
estimated_times = [time_.round("15min") for time_ in estimated_times]
|
|
||||||
|
|
||||||
# when there are no entries left (no entries are provided), skip
|
# when there are no entries left (no entries are provided), skip
|
||||||
if len(estimated_times)==0:
|
if len(estimated_times)==0:
|
||||||
violation_state = False
|
violation_state = False
|
||||||
return violation_state
|
return violation_state
|
||||||
|
|
||||||
|
difference = np.max(estimated_times) - np.min(estimated_times)
|
||||||
|
violation_state = difference > pd.Timedelta("15min")
|
||||||
|
|
||||||
|
# apply rounding. For example, the agreement of different participants may be required to match minute-wise
|
||||||
|
# '15min' rounds to 'every 15 minutes'. E.g., '2023-09-22 08:18:49' becomes '2023-09-22 08:15:00'
|
||||||
|
# estimated_times = [time_.round("15min") for time_ in estimated_times]
|
||||||
|
|
||||||
# there should only be one eta_berth, when all participants have provided the same time
|
# there should only be one eta_berth, when all participants have provided the same time
|
||||||
# this equates to the same criteria as checking, whether
|
# this equates to the same criteria as checking, whether
|
||||||
# times_agency.eta_berth==times_mooring.eta_berth==times_portadministration.eta_berth==times_pilot.eta_berth==times_tug.eta_berth
|
# times_agency.eta_berth==times_mooring.eta_berth==times_portadministration.eta_berth==times_pilot.eta_berth==times_tug.eta_berth
|
||||||
n_unique_times = len(np.unique(estimated_times))
|
# n_unique_times = len(np.unique(estimated_times))
|
||||||
violation_state = n_unique_times!=1
|
# violation_state = n_unique_times!=1
|
||||||
return violation_state
|
return violation_state
|
||||||
|
|
||||||
def check_unique_shipcall_counts(self, query:str, times_agency:pd.DataFrame, rounding="min", maximum_threshold=3, all_times_agency=None)->bool:
|
def check_unique_shipcall_counts(self, query:str, times_agency:pd.DataFrame, rounding="min", maximum_threshold=3, all_times_agency=None)->bool:
|
||||||
|
|||||||
Reference in New Issue
Block a user